yashi posted an update in the group Mathematics 6 months, 2 weeks ago यदि (2)^n – (2)^(n-1) = 4 ,तो (n)^n का क्या मान होगा ….. Monu replied 6 months, 2 weeks ago 27 Monu replied 6 months, 2 weeks ago you can also write … (2)^n – [(2)^n]/2 = 4 > [2(2)^n – (2)^n]/2 = 4 > (2)^n = (2)^3 > n =3 Then, (n)^n = (3)^3 = 27 Monu replied 6 months, 2 weeks ago You can also solve in other methods … [(2)^n – (2)^n (2)^-1 ] = 4 > (2)^n[ 1- 1/2] =4 > (2)^n (1/2) =4 > (2)^n =(2)^3 > n=3 Then, (n)^n = (3)^3 = 27 Priyanka replied 6 months, 2 weeks ago 27 yashi replied 6 months, 2 weeks ago Really Thanks …

27

you can also write …

(2)^n – [(2)^n]/2 = 4

> [2(2)^n – (2)^n]/2 = 4

> (2)^n = (2)^3

> n =3

Then, (n)^n = (3)^3 = 27

You can also solve in other methods …

[(2)^n – (2)^n (2)^-1 ] = 4

> (2)^n[ 1- 1/2] =4

> (2)^n (1/2) =4

> (2)^n =(2)^3

> n=3

Then, (n)^n = (3)^3 = 27

27

Really Thanks …